Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MUltan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Roberts, P. \& Sheldrick, G. M. (1979). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.

Structure and Conformation of 3-(Dibenzylamino)phenylacetonitrile

By S. Ianelli and M. Nardelli*
Istituto di Chimica Genrale ed Inorganica, Università degli Studi di Parma, Centro di Studio CNR per la Strutturistica Diffrattometrica, Viale delle Scienze 78, I-43100 Parma, Italy
\section*{D. Belletti}
Istituto di Strutturistica Chimica, Università degli Studi di Parma, Centro di Studio CNR per la Strutturistica Diffrattometrica, Viale delle Scienze 78, I-43100 Parma, Italy

and B. Jamart-Grégoire, A. Zouaoui and P. Caubère
Laboratoire de Chimie Organique I, UA CNRS no 457, Université de Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy CEDEX, France

(Received 29 January 1992; accepted 20 July 1992)

Abstract. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2}, \quad M_{r}=312.41$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, Z=4, F(000)=664$. For Mo $K \alpha_{1}, \lambda=$ $0.070930 \AA, \quad a=6.021(1), \quad b=15.989(4), \quad c=$ 17.906 (5) $\AA, V=1723.8$ (7) $\AA^{3}, D_{x}=1.204 \mathrm{Mg} \mathrm{m}^{-3}$, $\mu=0.0659 \mathrm{~mm}^{-1}$ for 1774 measured reflections. For $\mathrm{Cu} K \alpha_{1}, \quad \lambda=1.540562 \AA, \quad a=6.025(1), \quad b=$ 15.990 (5), $c=17.921$ (2) $\AA, V=1726.5$ (6) $\AA^{3}, D_{x}=$ $1.202 \mathrm{Mg} \mathrm{m}^{-3}, \mu=0.5088 \mathrm{~mm}^{-1}$ for 1942 measured reflections. The crystal structure analysis of the title compound confirms the prevailing meta-directing effect of nitrogen in arynic condensation reactions. The results of two analyses, carried out on data collected with Mo $K \alpha$ and $\mathrm{Cu} K \alpha$ radiations, are in quite good agreement showing that, when the crystal sample is good, acceptable results can be obtained even with an unfavourable ratio between the number of observations and the number of refined parameters.

Introduction. As part of our study on the arynic condensation of nitrile enolates, in order to obtain starting materials for further synthesis, the condensation reaction below has been carried out (DME $=$ 1,2 -dimethoxyethane). Compound (3) is of particular interest since the benzyl groups can be removed to

[^0]0108-2701/93/020278-05\$06.00
give the corresponding aniline which can be easily functionalized.

(1)

(3)

Although the prevailing meta-directing effect of nitrogen in arynic condensations is well established, some exceptions are known (Pansegrau, Rieker \& Meyers, 1988). Moreover, it was not possible to assign the correct structure to compound (3), as even the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were not enough for this purpose. For these reasons the X-ray crystal structure analysis of this compound was carried out, by collecting the intensity data with molybdenum radiation initially, and then with copper radiation, © 1993 International Union of Crystallography

Table 1. Experimental data for the crystal structure analyses

	Mo $K \alpha$	$\mathrm{Cu} K \alpha$
Diffractometer Enra	Enraf-Nonius CAD-4	4 Siemens AED
Reflections for lattice parameters		
Number	25	29
θ range (${ }^{\circ}$)	11-18	23-39
Crystal size (mm) 0.2	$0.28 \times 0.33 \times 0.39$	$0.28 \times 0.33 \times 0.39$
Extinction g factor	Not applied	$0.89(5) \times 10^{-7}$
Scan speed (${ }^{\circ} \mathrm{min}^{-1}$)	1.6-3.3	3-12
Scan width (${ }^{\circ}$) 0	$0.80+0.35 \tan \theta$	$1.20+0.14 \tan \theta$
θ range (${ }^{\circ}$)	3-25	3-70
h range	0-7	0-7
k range	0-19	0-19
I range	0-21	0-21
Standard reflection	2,9,9	2,8,10
Intensity variation	None	None
Scan mode	$\theta-2 \theta$	$\theta-2 \theta$
Number of measured reflections	1774	1942
Condition for observed reflections	$I>2 \sigma(1)$	$l>2 \sigma(I)$
Number of reflections used in refinemen	nement 764	1452
Max. LS shift to e.s.d. ratio	0.390	0.056
Min., max. height in final $\Delta \rho\left(\mathrm{e} \AA^{-3}\right)$	$\left.{ }^{-3}\right) \quad-0.14,0.07$	-0.13, 0.09
Number of refined parameters	297	297
$R=\Sigma \Delta F / \Sigma F_{o}$	0.0257	0.0332
$w R=\left[\sum w(\Delta F)^{2} / \sum w F_{0}^{2}\right]^{1 / 2}$	0.0259	0.0298
$S=\left[\sum w(\Delta F)^{2} /(N-P)\right]^{1 / 2 *}$	0.6665	0.4815
w	Unit	Unit

as with the first data set the ratio between the number of observations and the number of refined parameters was rather unfavourable. In the present paper the results of the two analyses are compared and the molecular structure and conformation are discussed.

Experimental. Two series of intensity data were collected with the same sample, initially using Mo $K \alpha$ radiation and then $\mathrm{Cu} K \alpha$ radiation, because the Mo data gave a ratio between the number of observations and the number of refined parameters (2.6) which was too low. For the Cu data this ratio improves to 4.9 , but remains well below the recommended value (>10). Table 1 summarizes the relevant data of the crystal structure analyses carried out on both sets of data.

The molecular geometries derived from these data were compared by means of the probability-plot analysis (Abrahams \& Keve, 1971) using all interatomic distances not involving H atoms to a limit of $4.65 \AA$ (De Camp, 1973). From the half-normal probability plot of Fig. 1, calculated by the ABRAHAMS program (Gilli, 1977), it appears that the two series of data are normally distributed with no significant systematic errors in the case of distances (apart from a small overestimate of the e.s.d.'s), the slope and intercept of the least-squares lines being $0.913(7)$ and $-0.005(7)(r=0.996)$, respectively (Fig. 1a); while for the atomic anisotropic displacements, the slope and intercept are 2.55 (6) and -0.62 (6) $(r=0.959)$, respectively, indicating that the e.s.d.'s are underestimated (Fig.
$1 b$) and the two sets of data are affected by systematic effects, probably in connection with the uncorrected absorption.

Comparison of single goemetrical parameters (bond distances, bond angles, torsion angles etc.) from the two sets of data shows that there are no

(a)

(b)

Fig. 1. Half-normal probability plots comparing the results of the analyses carried out with Mo and Cu data: (a) comparison of all interatomic distances $<4.65 \AA$ and (b) comparison of $U_{i j}$ values.

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic atomic displacement parameters $\left(\AA^{2} \times 10^{4}\right)$ with e.s.d.'s in parentheses
$U_{\text {cq }}$ is defined as one third of the trace of the orthogonalized

	x	y	z	$U_{\text {eq }}$
N1	1401 (4)	424 (2)	7164 (1)	544 (8)
N2	4977 (7)	-2809 (2)	9290 (2)	882 (13)
C1	3491 (6)	868 (2)	7214 (2)	553 (11)
C2	3586 (5)	1586 (2)	7764 (2)	487 (9)
C3	5489 (6)	2083 (2)	7779 (2)	592 (11)
C4	5658 (7)	2751 (2)	8272 (2)	725 (14)
C5	3942 (8)	2914 (2)	8755 (2)	765 (15)
C6	2046 (7)	2435 (2)	8745 (2)	699 (13)
C7	1871 (6)	1768 (2)	8246 (2)	564 (11)
C8	-194 (7)	708 (2)	6613 (2)	562 (11)
C9	-447 (5)	150 (2)	5932 (1)	485 (9)
C10	1207 (6)	-412 (2)	5727 (2)	571 (11)
C11	967 (7)	-901 (2)	5092 (2)	682 (13)
C12	-921 (8)	-837 (2)	4662 (2)	722 (14)
C13	-2571 (7)	-281 (3)	4860 (2)	695 (13)
C14	-2341 (6)	211 (2)	5497 (2)	580 (11)
C15	914 (5)	-230 (2)	7647 (2)	476 (9)
C16	-1031 (5)	-702 (2)	7554 (2)	529 (10)
C17	-1492 (6)	-1361 (2)	8034 (2)	615 (12)
C18	-82 (6)	-1565 (2)	8610 (2)	622 (12)
C19	1838 (6)	-1107 (2)	8706 (2)	532 (10)
C20	2339 (6)	-444 (2)	8236 (2)	512 (10)
C21	3385 (8)	-1303 (2)	9347 (2)	654 (13)
C22	4281 (7)	-2152 (2)	9314 (2)	629 (12)

significant differences and the values are quite consistent from the chemical point of view. In the following discussion only data from the $\mathrm{Cu} K \alpha$ analysis will be considered.
The integrated intensities were measured using a modified version (Belletti, Ugozzoli, Cantoni \& Pasquinelli, 1979) of the Lehmann \& Larsen (1974) peak-profile analysis procedure. Corrections for Lorentz and polarization effects were applied but no corrections were applied for absorption, while extinction was considered according to Zachariasen (1963) for the Cu data only.
The structure was determined by direct methods with SHELXS86 (Sheldrick, 1986) and refined by anisotropic full-matrix least squares on F, using SHELX76 (Sheldrick, 1976). The H atoms were located from a difference Fourier synthesis and refined isotropically. No attempt was made to determine the absolute structure. The atomic scattering factors and the anomalous-scattering coefficients were taken from International Tables for X-ray Crystallography (1974, Vol. IV). The final atomic coordinates from the Cu data are given in Table 2.*

[^1]The calculations were carried out on the Encore-Gould-Powernode 6040 computer of the Centro di Studio per la Strutturistica Diffrattometrica del CNR (Parma). In addition to the quoted programs, LQPARM (Nardelli \& Mangia, 1984), PARST (Nardelli, 1983), ORTEP (Johnson, 1965) and PLUTO (Motherwell \& Clegg, 1976) have been used.

Discussion. An ORTEP drawing of the molecule is displayed in Fig. 2 and in Table 3 the values of bond distances and angles from the two sets of data are compared. The differences between the corresponding values of the two sets of data are never significant, the ratio Δ / σ being less than 1.38 for distances, and 1.89 for angles. The e.s.d.'s of the Mo data are (on average) 1.80 and 1.71 times greater than those of the Cu data for distances and angles respectively. The average value of the bond distances is 1.399 (9) \AA for the Mo data and 1.400 (5) \AA for the Cu data giving $\Delta / \sigma=0.11$; the corresponding values for bond angles are $121.3(5), 121.4(3)^{\circ}$ and 0.18 , respectively.

These data show that the results of the analysis with Mo data are quite good in spite of the limited number of reflections, so rejection of a structure analysis solely on the basis of an unfavourable ratio between the number of observations and the number of refined parameters is not always defensible. Within reasonable limits, the goodness of data is certainly more important than their number.

The analysis of the molecular displacements was carried out on the Cu data in terms of the LST rigid-body model according to Schomaker \& Trueblood (1968) and Trueblood (1978), also considering the internal motions according to Dunitz \& White (1973) using the $T H M V$ program (Trueblood, 1984). The results of this analysis for the two sets of intensity data are summarized in Table 4.

The position of the acetonitrile substituent in the aniline ring is meta, which is in agreement with the

Fig. 2. ORTEP drawing of the molecule from the analysis with Cu data. Ellipsoids at the 50% probability level.

Table 3. Comparison of bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ from the two analyses carried out with Mo and Cu data with e.s.d.'s in parentheses

	Mo data	Cu data
$\mathrm{Nl}-\mathrm{Cl}$	1.442 (8)	1.448 (4)
$\mathrm{N} 1-\mathrm{C} 8$	1.457 (8)	1.451 (4)
$\mathrm{N} 1-\mathrm{C} 15$	1.388 (7)	1.387 (4)
N2-C22	1.120 (8)	1.132 (5)
$\mathrm{C} 1-\mathrm{C} 2$	1.527 (8)	1.515 (4)
C2-C3	1.395 (8)	1.395 (5)
C2-C7	1.371 (8)	1.378 (5)
C3-C4	1.394 (9)	1.390 (5)
C4-C5	1.370 (11)	1.372 (6)
C5-C6	1.363 (11)	1.375 (6)
C6-C7	1.391 (9)	1.397 (5)
C8-C9	1.529 (7)	1.521 (4)
C9-C10	1.383 (8)	1.390 (5)
C8-N1-C15	121.4 (5)	121.4 (3)
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{Cl} 5$	120.5 (5)	121.0 (3)
$\mathrm{Cl}-\mathrm{Nl}-\mathrm{C} 8$	118.1 (4)	117.6 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	115.3 (5)	116.4 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	122.8 (5)	122.6 (3)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	118.0 (5)	118.4 (3)
C3-C2-C7	119.3 (5)	118.9 (3)
C2-C3-C4	120.0 (6)	120.6 (3)
C3-C4-C5	119.7 (6)	119.5 (4)
C4-C5-C6	120.6 (6)	120.8 (4)
C5-C6-C7	120.3 (7)	119.7 (4)
C2-C7-C6	120.2 (6)	120.4 (3)
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	115.4 (5)	115.3 (3)
C8--C9-C14	118.7 (5)	119.5 (3)
C8-C9-C10	121.3 (5)	121.3 (3)
C10-C9-Cl4	120.0 (5)	119.2 (3)
C9-C10-Cl1	120.2 (6)	120.3 (3)
C8-N1-C15-C16	6.9 (8)	7.9 (4)
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 15-\mathrm{C} 20$	6.5 (8)	5.1 (4)
$\mathrm{Cl} 5-\mathrm{Nl}-\mathrm{Cl}-\mathrm{C} 2$	-87.4 (6)	-85.9 (4)
$\mathrm{Cl} 5-\mathrm{Nl}-\mathrm{C} 8-\mathrm{C} 9$	-75.2 (6)	-76.0 (4)

Table 4. Analysis of the atomic anisotropic displacement in terms of LST rigid-body motion and internal motions

	Treatment $\quad \Delta$	$\Delta \times 10^{4}(\AA)$	$\begin{gathered} \sigma(w \Delta U) \\ \times 10^{4}\left(\AA^{2}\right) \end{gathered}$	$\begin{gathered} \sigma\left(U_{o}\right) \\ \times 10^{4}\left(\AA^{2}\right) \end{gathered}$	$w R_{U}$
	Rigid body		68		0.194
Mo data		87 (114)		37	
	Internal motions		50		0.141
Cu data	Rigid body		56		0.141
		63 (85)		20	
	Internal motions		38		0.097
Group	Libration		Libration amplitude		
librating	along		Mo data	Cu data	
C22, N2	C19-C21		3.2 (16)	4.1 (10)	
C3-C7	C2-PF1		4.9 (5)	4.8 (4)	
C10-C14	C9-PF2		4.8 (5)	4.6 (4)	
C16-C20	C15-PF3		2.6 (6)	1.9 (6)	
Nı, Cl, C8	8 Cl5-PF3		2.3 (8)	2.7 (5)	

$\mathrm{PF} 1=$ point on the normal at C 2 to the mean plane through the $\mathrm{C} 2-\mathrm{C} 7$ phenyl; $\mathrm{PF} 2=$ point on the normal at C 9 to the mean plane through the C9-C14 phenyl; PF3 = point on the normal at C 15 to the mean plane through the C15-C20 phenyl; $\Delta=$ mean difference of the mean-square vibrational amplitudes along the interatomic directions for all pairs of atoms; $\Delta U=U_{i j}(\mathrm{obs})$ $U_{i j}$ (calc.); $w R_{U}=\left[\Sigma(w \Delta U)^{2} / \Sigma\left(w U_{o}\right)^{2}\right]^{1 / 2} ; \sigma(w \Delta U)=\left[\Sigma(w \Delta U)^{2} /\right.$ $\left.\sum w^{2}\right]^{1 / 2} ; \sigma\left(U_{o}\right)=$ mean e.s.d. of U_{o} values.
directing effect commonly exerted by nitrogen in arynic condensation reactions. Considering the other structural aspects of the molecule, it is noteworthy that the amine N atom is only 0.018 (2) \AA out of the plane of the C atoms it is bonded to, and this plane is nearly coplanar with the aniline ring [dihedral angle $\left.173.5(1)^{\circ}\right]$. This, coupled with the values of the $\mathrm{N}-\mathrm{C}(\mathrm{ar}$.) and $\mathrm{C}(\operatorname{ar}$.)- $\mathrm{C}(\operatorname{ar}$.) distances in the aniline ring, supports the valence-bond description of this system in terms of the contributions of the following resonance structures which prevent rotation about the $\mathrm{N}-\mathrm{C}($ ar. $)$ bond.

The two phenyl rings of the benzyl groups are approximately perpendicular to the plane of the amino group, the dihedral angles they form with it

Fig. 3. Packing of the molecules in the unit cell.
being 95.7 (1) and $85.5(1)^{\circ}$ for the $\mathrm{C} 2-\mathrm{C} 7$ and C9-C14 phenyl rings, respectively. No particular trend is observed for the $\mathrm{C}-\mathrm{C}$ distances in these two rings, while the endocyclic angles at the ipso and meta C atoms decrease by approximately the same magnitude as those at the ortho and para C atoms increase. These angular deformations are due to the effect exerted by the amino substitutent, which is in agreement with the findings of Domenicano, Vaciago \& Coulson (1975).

The acetonitrile group is linear $\left[\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{N}=\right.$ $179.8(4)^{\circ}$] and is tilted with respect to the benzene plane by $59.1(1)^{\circ}$, no electronic effect being present to impose any particular orientation. Fig. 3 shows how the molecules are packed in the unit cell under van der Waals interactions.

The authors gratefully acknowledge financial support from the European Economic Community under contract No. SC1000657.

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157-165.
Belletti, D., Ugozzoli, F., Canton, A. \& Pasquinelli, G. (1979). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens AED con Sistema General Automation Jumbo 220. Internal Reports 1-3/79. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
De Camp, W. H. (1973). Acta Cryst. A29, 148-150.
Domenicano, A., Vaciago, A. \& Coulson, C. A. (1975). Acta Cryst. B31, 221-234.
Dunitz, J. D. \& White, D. N. J. (1973). Acta Cryst. A29, 93-94.
Gilli, G. (1977). ABRAHAMS. Program for calculating halfnormal probability plots. Univ. of Ferrara, Italy.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
Motherwell, W. D. S. \& Clegg, W. (1976). Pluto. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. \& Mangia, A. (1984). Ann. Chim. (Rome), 74, 163-174.
Pansegrau, P. D., Rieker, W. F. \& Meyers, A. I. (1988). J. Am. Chem. Soc. 110, 7178-7184.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Trueblood, K. N. (1978). Acta Cryst. A34, 950-954.
Trueblood, K. N. (1984). THMV. Univ. of California, Los Angeles, USA.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Structure of Amprolium Hydrochloride

By Whanchul Shin* and Dong-gweon Oh
Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea

(Received 21 January 1992; accepted 23 June 1992)

Abstract

Amino-2-propyl-5-pyrimidinyl)-methyl]-2-methylpyridinium chloride hydrochloride, $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{4}^{+} . \mathrm{Cl}^{-} . \mathrm{HCl}, M_{r}=315.2$, triclinic, $P \overline{1}, a=$ 11.327 (2), $\quad b=13.842$ (2), $\quad c=10.959$ (2) $\AA, \quad \alpha=$ 90.68 (2), $\quad \beta=110.13(1), \quad \gamma=99.10(2)^{\circ}, \quad V=$ 1588.9 (4) $\AA^{3}, Z=4, D_{x}=1.318 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} K \alpha)$

[^2]$=1.5418 \AA, \quad \mu=35.7 \mathrm{~cm}^{-1}, \quad F(000)=664, \quad T=$ $297 \mathrm{~K}, R=0.054$ for 3680 reflections with $F \geq 6 \sigma(F)$. The two independent divalent amprolium molecular ions are interconnected by four $\mathrm{N}\left(4^{\prime} \alpha\right)-\mathrm{H}^{\cdots} \mathrm{Cl}^{-}$ (amino group) hydrogen bonds forming a dimeric unit which has a pseudo center of symmetry, discounting the propyl side chains. There are only van der Waals interactions between these dimeric units.

[^0]: * To whom all correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and bond lengths and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55604 (20 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: KA1003]

[^2]: * To whom correspondence should be addressed.

